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Abstract
The classical nonrelativistic motion of an electric charge in the presence of a
magnetic monopole is reviewed. Using general properties of these trajectories it
is shown that the path integral form of the WKB approximation for the charged
particle propagator develops an anomalous form for the transition probability
density unless the Dirac quantization condition is imposed. This result is shown
to be independent of the specific form of the vector potential used to represent
the magnetic monopole. The general result is then verified for the specific
case that the standard Dirac string solution is used in the path integral. This
result is interpreted as an indirect demonstration of the Dirac condition. Other
properties of the solutions and the associated action are briefly discussed.

PACS numbers: 03.65.Sq, 14.80.Hv

1. Introduction

Since the seminal work of Dirac [1] the quantum mechanical aspects of magnetic monopoles
have been studied in a variety of contexts. The Dirac quantization condition for electric charge
e and magnetic charge g,

eg = 1
2n, (1)

where n is an integer, has been subsequently derived by a variety of methods [2–4] and
generalized to nonabelian theories [5]. Dirac’s original argument for (1) was based on a
singular form for the vector potential A in the presence of the magnetic monopole—the ‘Dirac
string.’ Rotational invariance of the electron wavefunction in the presence of such a vector
potential then requires (1).

The nature of the Dirac condition remains a subject of investigation. There has been recent
controversy regarding the nature of the singularities required by the vector potential [6]. This
issue is important since many derivations of the Dirac condition, such as Wu and Yang’s fibre
bundle formulation [4], rely on patching a specific form for the vector potential to avoid its
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singularities. Alternate derivations [3] of the Dirac condition and its generalizations stem from
enforcing the rotation group algebra—either using finite-dimensional or infinite-dimensional
representations—on the generalization of the total quantum mechanical angular momentum
J = r × (−i∇ − eA) − egr/r , which also directly involves the specific form of the vector
potential A. As a result, any derivation of (1) that does not require a specific form for the
vector potential allows the questions regarding the role and nature of the singularities of A
to be sidestepped. One such demonstration has been given by Jackiw [7], who examined the
cocycles of the electron wavefunction that arise from demanding associativity of translations.

This paper will examine the relationship of the path integral form of the WKB
approximation to condition (1) in a manner that is also ultimately independent of the specific
form for the vector potential. The relationship is developed using the nature of classical
trajectories for a spinless electric charge moving in the presence of a magnetic monopole.
Some aspects of large impact parameter trajectories are discussed at the textbook level [8],
but to the knowledge of the author there has been no systematic consideration of the quantum
mechanical implications of classical trajectories in the charge–monopole system. It will be
demonstrated that for the case that the initial and final positions are parallel there are multiple
classical trajectories characterized by a winding number. A general proof then shows that the
path integral form of the WKB approximation for the electric charge’s propagator yields an
anomalous transition probability unless the Dirac condition is met. This proof is independent
of a specific form for the vector potential, although it will be shown to be consistent with the
use of the Dirac string vector potential in the path integral. This result is interpreted as indirect
support for the necessity of the Dirac condition (1), since it is required to salvage the WKB
approximation. It has the added aspect of being independent of the specific form of the vector
potential.

The remainder of the paper is organized as follows. In section 2 relevant aspects of
the classical trajectories are reviewed. In section 3 general properties of the path integral
representation of the WKB approximation and the classical trajectories are used to show that
the electron propagator yields a unique transition probability only if the Dirac condition is
met. Other aspects of the propagator are briefly discussed.

2. Classical trajectories

The classical motion of a spinless charge in the presence of magnetic monopole fixed at the
origin—or equivalently the reduced mass problem—was first analysed by Poincarè [9] and
subsequently considered by other authors [10]. The properties of trajectories between an
initial position ro and a final position rf in the time T will be reviewed briefly so that results
relevant to this paper can be developed.

For a magnetic monopole with charge g fixed at the origin, so that the magnetic field is
B = gr/r3, a spinless electric point charge e with mass m has the classical equation of motion

ṗ = mr̈ = eṙ × B = eg

r3
ṙ × r = −egL

mr3
, (2)

where L = mr × ṙ is the usual mechanical angular momentum. For simplicity it will be
assumed that eg > 0, although the opposite sign is possible. Since p ·L = 0 the kinetic energy
E = p2/2m is conserved. Since r · L = 0 it follows that

d

dt
(r · p) = p2

m
= 2E �⇒ r · p = R + 2Et, (3)
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where R is the initial value of r · p. Integrating (3) yields r as a function of time

r(t) =
√

r2
o +

2Rt

m
+

2Et2

m
. (4)

If vo is the initial speed of the electric charge then the radial velocity vr → vot for large t.
Using (2) it is straightforward to show that the vector

D = L − egr̂ (5)

is a constant of motion, where r̂ = r/r is a radial unit vector pointing from the origin to the
current position of the electric charge. Unlike the central force problem, there are no stable
planar orbits since L is not conserved. However, because D2 = L2 +e2g2 is constant it follows
that L2 is constant. The angle α between L and D is constant since L · D = LD cos α = L2,
so that

cos α = L

D
= L√

L2 + e2g2
. (6)

Since r̂ · D = −eg is a constant, it follows that the angle between r̂ and D is also constant,
demonstrating that the classical trajectory lies on a cone with its tip at the origin and its axis
coinciding with −D. The half-angle of the cone, denoted by ψ , is then determined from L
by cos ψ = eg/D = eg/

√
L2 + e2g2. Because r lies in the cone and the velocity is in the

tangent space of the cone it follows that L is perpendicular to the surface of the cone at all
points along the trajectory. This yields cos α = sin ψ and, when combined with result (6),
gives L = eg tan ψ . Using the relation of L and D shows that for the case eg > 0 the motion
along the cone is right handed around the D axis.

For the purposes of this paper there is no loss in generality from choosing the z-axis
to coincide with −D, placing the cone of motion in the +z half-space. For such a choice
of coordinates the azimuthal speed is given by vϕ = L/mr , so that the angular velocity of
rotation is left handed about the z-axis and given by

ϕ̇ = − L

mr2 sin ψ
. (7)

Using result (4) and the identity

L2 + R2 = 2mr2
oE (8)

allows (7) to be integrated to obtain the change in the azimuthal angle of the trajectory

ϕ(T ) − ϕ(0) = − 1

sin ψ

[
arctan

(
R + 2ET

L

)
− arctan

(
R

L

)]
. (9)

The next step in determining the classical trajectory is to relate the values of E,R and ψ

to the values of ro, rf and T. The kinetic energy E is fixed by solving (4) for v2
o at the time T

using the identity (8), with the result that

2E

m
= v2

o = r2
f + r2

o

T 2
± 2rf ro

T 2

√
1 − z2 tan2 ψ, (10)

where the dimensionless parameter z = egT /mrorf has been introduced. The choice of sign
in (10) is dictated by the angle between ro and rf , which will be denoted γ . If γ < π/2 the
negative sign is chosen. Although ψ depends upon z, it is clear from the conical nature of
the motion that the minimum real value for ψ is γ /2. As a result, the kinetic energy becomes
complex if z tan(γ /2) > 1, showing that not all initial and final points are connected by a
classical trajectory for an arbitrary value of T. This is discussed further at the end of section 3.



2798 M S Swanson

Result (9) may be simplified by using (8) and (10) and straightforward trigonometric
manipulations to show that

ϕ(T ) − ϕ(0) = − 1

sin ψ
arcsin(z tan ψ). (11)

Result (11) is consistent with the previously determined emergence of complex values for the
case that z tan(γ /2) > 1. For the choice of coordinate system the value of (11) must coincide
with the difference in azimuthal angles for ro and rf modulo 2π . Since ψ is the constant polar
angle of both vectors, its value can therefore be found by solving the spherical coordinate
formula

cos γ = cos2 ψ + sin2 ψ cos

(
1

sin ψ
arcsin(z tan ψ)

)
(12)

Solving (12) for arbitrary z and γ is not possible and numerical methods must be employed.
However, for the case that ro and rf are parallel, i.e., γ → 0, it is relatively simple to
demonstrate the existence of multiple trajectories. For the case γ = 0 there is a radial
trajectory given by

r =
(

rf − ro

T

)
t + ro (13)

corresponding to linear motion. In addition, there is a second trajectory if

ϕ(T ) − ϕ(0) = − 1

sin ψ
arcsin(z tan ψ) = −2πk, (14)

where k is an arbitrary positive integer, since for such a case the right-hand side of (12) reduces
to unity, corresponding to γ = 0. If ψ → 0 so that z tan ψ → 0, then condition (14) reduces
to

cos ψ = z

2πk
�⇒ z tan ψ =

√
4π2k2 − z2. (15)

Result (15) shows that for z ≈ 2πk there is a cone of motion meeting the criterion ψ ≈ 0
which corresponds to a trajectory that winds around the infinitesimal cone k times. This result
occurs since γ = 0 corresponds to a cumulation point of the motion. Numerical analysis
verifies that there are multiple trajectories for z in a range of values around 2πk, but that in
the general case these trajectories are energetically distinct from (13) since ψ , although small,
is nonzero. This is similar to the motion of a free particle on a circle, where for a given time T
there is a denumerable infinity of energetically distinct classical trajectories between any two
points on the circle characterized by an integer winding number. The existence of multiple
trajectories lies at the source of the WKB anomaly discussed in section 3.

3. The WKB approximation and the Dirac condition

For the case under consideration, the classical action is given by [11]

I =
∫ T

0
dtL =

∫ T

0
dt

(
1

2
mṙ · ṙ + eA · ṙ

)
, (16)

where A is the vector potential of the monopole. The general result derived in this section will
not rely upon a specific form for A. Instead, the relationship B = ∇ × A = gr/r3, so that
∇ · B = 4πgδ(x), and the time independence of A will be sufficient.

The charged particle’s propagator is given by the Lagrangian path integral [12]

〈rf , T |ro, 0〉 =
∫ rf

ro

[d3r] exp(iI ), (17)
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where I is given by (16). The WKB approximation for the propagator (17) is given by [13]

〈rf , T |ro, 0〉 =
∑

n

(
i

8π3
det

∂2In

[
rf , ro, T

]
∂x

j

f ∂xk
o

)1/2

exp(iIn), (18)

where the sum is over all possible classical trajectories connecting rf and ro in the time T while
In[rf , ro, T ] is the value of the action along the nth trajectory. Because the kinetic energy is
constant and A is time-independent, the action (16) along a classical trajectory becomes

I = ET + e

∫
P

A · dr (19)

where E is the kinetic energy, given by (10), and the integral is evaluated along the classical
trajectory P joining the initial and final points.

In the previous section it was specifically established that there can be two trajectories,
denoted by P1 and P2, for the case that ro and rf are parallel. For the case γ = 0 the
determinants in (18) are given explicitly by

lim
γ→0

det
∂2In

[
rf , ro, T

]
∂x

j

f ∂xk
o

= m3z4

16T 3 sin4 1
2z

. (20)

It is interesting to note that (20) is singular at precisely the values of z that correspond
to the energetically degenerate trajectories discussed in the section II. However, the results
presented next will not rely upon result (20). Instead, it will be assumed only that there are
two trajectories between the initial and final points and that the determinants, denoted by Dn

for the respective paths, are real-valued functions. For such a case (18) can then be written as

〈rf , T |ro, 0〉 =
√

iD1

8π3
exp

(
iE1T + ie

∫
P1

A · dr
)

+

√
iD2

8π3
exp

(
iE2T + ie

∫
P2

A · dr
)

,

(21)

where En is the kinetic energy of the respective path. However, it is the transition probability
density that must be unique, and it is given by

|〈rf , T |ro, 0〉|2 = 1

8π3

(
D1 + D2 + 2

√
D1D2 cos

(
(E1 − E2)T + e

∮
P

A · dr
))

(22)

where the closed path P is defined by the two distinct paths P1 and P2 from ro to rf , i.e.,∮
P

A · dr =
∫

P1

A · dr −
∫

P2

A · dr. (23)

Using (23) shows that (22) possesses the required invariance under the exchange 1 ↔ 2.
Stokes’ theorem and B = ∇ × A immediately reduces (22) to

|〈rf , T |ro, 0〉|2 = 1

8π3

{
D1 + D2 + 2

√
D1D2 cos

(
(E1 − E2)T + e

∫
S

B · dS
)}

, (24)

where S is an arbitrary surface bounded by P. Result (24) is true regardless of the specific
form for A.

The right handed surfaces bounded by the oriented closed path P fall into two equivalence
classes in the presence of a magnetic monopole: those with positive magnetic flux and those
with negative magnetic flux. Stated another way, two surfaces bounded by P belong to the same
equivalence class if the difference in their surface integrals results in a closed surface integral
whose volume does not contain the monopole; otherwise they are in separate equivalence
classes. In order for (24) to be unambiguous the choice of equivalence class for the surface



2800 M S Swanson

integral must be irrelevant. If S1 belongs to one equivalence class and S2 to the other, the
absence of an anomaly for (24) requires that

cos

(
(E1 − E2)T + e

∫
S1

B · dS
)

− cos

(
(E1 − E2)T + e

∫
S2

B · dS
)

= 0. (25)

The identity cos α − cos β = −2 sin 1
2 (α + β) sin 1

2 (α − β) shows that (25) is satisfied if

sin

(
1

2
e

∫
S1

B · dS − 1

2
e

∫
S2

B · dS
)

= sin

(
1

2
e

∮
S

B · dS
)

= 0, (26)

where by definition the closed surface S contains the monopole. Result (26), Gauss’s law, and
∇ · B = 4πgδ(x) immediately yields the Dirac condition (1) since the vanishing of the sine
function in (26) requires its argument, given by

1

2
e

∮
S

B · dS = 1

2
e

∫
V (S)

d3r ∇ · B = 2πeg, (27)

to be an integer multiple of π . An identical argument shows that surfaces in the same
equivalence class result in (27) vanishing since V (S) does not contain the monopole. As a
result, enforcing the Dirac condition removes the anomaly in the WKB approximation for the
transition probability.

It is of interest to see how the general result just derived emerges for the case that a
specific form for A is chosen and the trajectories determined in section 2 are used. In spherical
coordinates (r, θ, ϕ) the vector potential A can be chosen to be the much studied Dirac string

A± = g(cos θ ± 1)

r sin θ
ϕ̂, (28)

which yields B = ∇ × A± = gr/r3. The two forms of (28) are related by the gauge
transformation A− = A+ −∇
 with 
 = 2gϕ. The relation of the string singularity to gauge
transformations is at the basis of the well-known fibre bundle formulation of the magnetic
monopole first developed by Wu and Yang [4]. Fixing the z-axis to coincide with −D, so that
θ = ψ , allows the second term in (19) to be evaluated along a classical trajectory with the
result that

e

∫ T

0
dtA± · ṙ = eg(cos ψ ± 1)(ϕ(T ) − ϕ(0)), (29)

where vϕ = L/mr and (7) have been used. However, because A+ and A− are related by a
gauge transformation, the same result for the transition probability must occur regardless of
the choice of sign in (29). This is equivalent to the demand that either equivalence class of
surfaces yields the same result for (24). In the previous section it was established that there
can be two classical trajectories in the limit γ = 0, one with zero winding number, for which
(29) vanishes, and the other with a nonzero winding number ϕ(T )−ϕ(0) = −2πk. Using the
same steps that led from (21) to (22) shows that the transition probability is gauge invariant
only if

cos((Ek − E0)T + eg(cos ψ + 1)2πk) − cos((Ek − E0)T + eg(cos ψ − 1)2πk) = 0, (30)

where En is the energy of the winding number n trajectory. The same trigonometric identity
shows that (30) is satisfied if sin 2πegk = 0 for an arbitrary integer k, and this immediately
yields the Dirac condition (1), in agreement with the general result (26).

It was noted in section 2 that both the kinetic energy and (11) become complex if
z tan ψ > 1, and this places an upper bound zmax = 1/ tan(γ /2) on values of z for which there
is a real trajectory. Numerical analysis verifies that as z approaches zmax the solution to (12)
becomes complex valued, signalling the absence of a real trajectory. An approximate solution
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to (12) can be found for the case that γ is infinitesimal. Assuming that ψ is also small results
in (11) giving ϕ(T ) − ϕ(0) ≈ z, so that (12) yields

tan ψ ≈
√

1 − cos γ

cos γ − cos z
≈ γ√

2 − 2 cos z
. (31)

Approximation (31) clearly breaks down if z < γ , again related to the appearance of complex
solutions for ψ . Result (31) can be used in the action to demonstrate result (18). In addition,
result (31) is consistent with the emergence of a free particle propagator in the g → 0 limit or
equivalently the z → 0 limit. In order for (31) to remain valid this limit must be taken holding
γ 
 z. For such a case it follows that

lim
z→0

√
1 − z2 tan2 ψ =

√
1 − γ 2 ≈ 1 − 1

2γ 2 ≈ cos γ (32)

so that (10) reduces to v2
o = | rf − ro|2/T 2, which is the usual free particle result.

As z becomes very large the set of points connected by a real trajectory lies on and
inside an infinitesimal cone containing the initial position ro in its face. All other points are
classically inaccessible and yield complex values for ψ when (12) is solved. As a result,
for large z the WKB approximation can be defined only by analytic continuation to complex
values of ψ . It is straightforward to demonstrate that there are no pure imaginary solutions to
(12) for large z since for pure imaginary values of ψ = iζ , with ζ real, equation (12) becomes

cos γ = cosh2 ζ − sinh2 ζ cos

(
1

sinh ζ
sinh−1 (z tanh ζ )

)
(33)

and the right-hand side of (33) is always greater than 1. Numerical analysis bears out this
result. For example, setting z = 10.000 and γ = 1.000 yields an approximate solution to (12)
of ψ ≈ 0.216 + 0.295 i. As a result, the term ET appearing in action (19), rewritten as

ET = m
(
r2
f + r2

o

)
2T

± eg

z

√
1 − z2 tan2 �, (34)

will be complex valued for large z. In that regard it is well known that g → −g under
time reversal [8], so that z itself is invariant. The simultaneous antiunitary operations of
T → −T , g → −g, i → −i, and ro ↔ rf do not leave the WKB approximation invariant
in the case that complex values for ψ are used. Such a result therefore explicitly breaks time
reversal invariance.

It will be of interest to analyse this unusual result in greater detail to determine an
approximate form for the complex ψ as well as to determine whether analytic continuation is
physically relevant to the WKB approximation or whether it signals a breakdown of the WKB
approximation for large z. However, the WKB approximation presented here can be used to
determine the electron partition function since it is given by evaluating the transition element
for identical initial and final states, i.e., γ = 0, so that real trajectories always exist. This
analysis will be presented in future work.
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